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1
AUTOMATIC TRACK DESCRIPTION
GENERATOR

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Other features,
details, utilities, and advantages of the claimed subject
matter will be apparent from the following more particular
written Detailed Description of various implementations and
implementations as further illustrated in the accompanying
drawings and defined in the appended claims.

An embodiment of a system is operable to dynamically
generate a track description of at least a portion of a track on
a storage medium such. The track description can be gen-
erated automatically in real-time. This real-time generation
of'the track description frees up valuable memory that would
otherwise be used for a track description table for other use.

An embodiment of a method provides for accessing
locations on a storage medium having tracks on which data
can be stored in data sectors. The method includes dynami-
cally generating a track description describing at least a
portion of a track. The track description may comprise a
track description entry that includes one or more parameters
describing a portion of the track.

BRIEF DESCRIPTION OF THE DRAWINGS

The described technology is best understood from the
following Detailed Description describing various imple-
mentations read in connection with the accompanying draw-
ings.

FIG. 1 illustrates a plan view of an example disc drive.

FIG. 2 illustrates the example functional components of a
disc drive.

FIG. 3 is a plan view of a disc according to one embodi-
ment.

FIG. 4 illustrates example data wedges and their compo-
nent fields between servo control wedges.

FIG. 5 illustrates a model including defined values used
for generating a track description entry.

FIGS. 6-12 are flow charts illustrating algorithms for
carrying out dynamic track description generation.

DETAILED DESCRIPTIONS

An embodiment of a system is operable to dynamically
generate a track description of at least a portion of a track on
a storage medium. The track description can be generated
automatically in real-time, thereby obviating the need for a
track description table to be permanently stored in memory.
As such, valuable memory that would otherwise be used for
a track description table is freed for other use.

An embodiment of a method provides for accessing
locations on a storage medium having tracks on which data
can be stored in data sectors. The method includes dynami-
cally generating a track description describing at least a
portion of a track. The track description may comprise a
track description entry that includes one or more parameters
describing a portion of the track.

In at least one embodiment, the tracks are substantially
circular and the storage medium is logically segmented into
a plurality of data wedges. In this embodiment, a track
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description entry includes a physical block displacement
(PBD), a last sector fragment index (LSFI), and a last sector
fragment length (LSFL). The PBD indicates a sector dis-
placement from a starting location of a track, the LSFI
indicates which sector fragment is the last sector fragment in
a data wedge, and LSFL indicates the number of symbols in
the last sector fragment in the data wedge.

The PBD, LSFI and LSFL are typically determined for a
given data wedge prior to the system being synchronized to
the given data wedge. In one embodiment, the PBD, LSFI
and LSFL are determined during a data wedge time between
a trailing edge of a first servo synchronization wedge and a
leading edge of a second servo synchronization wedge. The
first servo synchronization wedge is prior to a data wedge
prior to the given data wedge and the second servo synchro-
nization wedge is prior to the given data wedge.

After the track description entry is generated for a given
data wedge, the system can compare the sector indicated by
the PBD to a sector of interest to determine if the given data
wedge includes the sector of interest. The given data wedge
then can be navigated based on the PBD, LSFI and LSFL
and the data in the sector of interest is processed (e.g., stored
to or read from the storage medium).

One device that may implement automatic track descrip-
tion generation exemplified herein is a hard disc drive 100.
FIG. 1 illustrates a plan view of an example disc drive 100,
The disc drive 100 includes a base 102 to which various
components of the disc drive 100 are mounted. A top cover
104, shown partially cut away, cooperates with the base 102
to form an internal, sealed environment for the disc drive in
a conventional manner. The components include a spindle
motor 106 that rotates one or more storage medium discs
108 at a constant high speed. Information is written to and
read from tracks on the discs 108 through the use of an
actuator assembly 110, which rotates during a seek operation
about a bearing shaft assembly 112 positioned adjacent the
discs 108. The actuator assembly 110 includes a plurality of
actuator arms 114 that extend towards the discs 108, with
one or more flexures 116 extending from each of the actuator
arms 114. Mounted at the distal end of each of the flexures
116 is a head 118 that includes an air bearing slider enabling
the head 118 to fly in close proximity above the correspond-
ing surface of the associated disc 180. The distance between
the head 118 and the storage media surface during flight is
referred to as the “fly height”.

During a seek operation, the track position of the head 118
is controlled through the use of a voice coil motor (VCM)
124, which typically includes a coil 126 attached to the
actuator assembly 110, as well as one or more permanent
magnets 128 which establish a magnetic field in which the
coil 126 is immersed. The controlled application of current
to the coil 126 causes magnetic interaction between the
permanent magnets 128 and the coil 126 so that the coil 126
moves in accordance with the well-known Lorentz relation-
ship. As the coil 126 moves, the actuator assembly 1010
pivots about the bearing shaft assembly 112, and the heads
118 are caused to move across the surfaces of the discs 108.

The spindle motor 106 is typically de-energized when the
disc drive 100 is not in use for extended periods of time. The
heads 118 are moved away from portions of the disk 108
containing data when the drive motor is de-energized. The
heads 118 are secured over portions of the disk not contain-
ing data through the use of an actuator latch arrangement
and/or ramp assembly 144, which prevents inadvertent
rotation of the actuator assembly 110 when the drive discs
108 are not spinning.
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A flex assembly 130 provides the requisite electrical
connection paths for the actuator assembly 110 while allow-
ing pivotal movement of the actuator assembly 110 during
operation. The flex assembly 130 includes a printed circuit
board 134 to which a flex cable connected with the actuator
assembly 100 and leading to the head 118 is connected. The
flex cable may be routed along the actuator arms 114 and the
flexures 116 to the heads 118. The printed circuit board 134
typically includes circuitry for controlling the write currents
applied to the heads 118 during a write operation and a
preamplifier for amplifying read signals generated by the
heads 110 during a read operation. The flex assembly 130
terminates at a flex bracket for communication through the
base deck 102 to a disc drive printed circuit board (not
shown) mounted to the bottom side of the disc drive 100.

FIG. 2 illustrates the primary functional components of a
disc drive incorporating one of the various implementations
of the described technology and generally shows the main
functional circuits that are resident on the disc drive printed
circuit board and used to control the operation of the disc
drive. The disc drive is operably connected to a host
computer 240 in a conventional maimer. Control commu-
nication paths are provided between the host computer 240
and a disc drive microprocessor 242, the microprocessor 242
generally providing top level communication and control for
the disc drive in conjunction with programming for the
microprocessor 242 stored in microprocessor memory
(MEM) 243. The MEM 243 can include random access
memory (RAM), read only memory (ROM) and other
sources of resident memory for the microprocessor 242.

The discs are rotated at a constant high speed by a spindle
motor control circuit 248, which typically electrically com-
mutates the spindle motor through the use, typically, of back
electromotive force (BEMF) sensing. During a seek opera-
tion, wherein an actuator 210 moves heads 218 between
tracks on the storage media, the position of the heads 218 is
controlled through the application of current to the coil 226
of a voice coil motor. A servo control circuit 250 provides
such control. During a seek operation the microprocessor
242 receives information regarding the velocity of the head
218, and uses that information in conjunction with a velocity
profile stored in memory 243 to communicate with the servo
control circuit 250, which will apply a controlled amount of
current to the voice coil motor coil 226, thereby causing the
actuator assembly 210 to be pivoted.

According to embodiments described herein, micropro-
cessor 242 initializes a small set of parameters that describe
a portion of the initial data track wedge. In order for the
hardware described here to generate parameters per data
wedge that indicate, for every sector fragment in the data
wedge, its relative sector displacement from the start of the
track and the fragment displacement from the start of the
current data wedge and idle length of the last data fragment
of the data wedge. It is assumed that, if there are multiple
data fragments in the data wedge, all the remaining data
fragments terminate a complete sector. In the case of the
initial data fragment, its initial running length within a sector
is remembered by the hardware, since the running length of
the last fragment of its associated sector for the previous data
wedge was previously calculated by the hardware.

These parameters initialized by microprocessor 242 may
include physical block displacement (PBD), last sector
fragment index (LSFI) and last sector fragment length
(LSFL). PBD indicates the sector displacement from the
start of a track. LSFI indicates which sector fragment is the
last sector fragment in a data wedge. LSFL indicates the
running number of symbols in the last sector fragment in the

10

15

20

25

30

35

40

45

50

55

60

65

4

data wedge. In addition, the running length of the previous
data wedge’s last data fragment within its associated sector
is remembered and initialized into media counting hardware
in the controller that counts to sector boundaries for non-last
fragments of the current data wedge.

In the case of the last data fragment of the wedge, the
media counting hardware in the controller counts to the last
fragment length. In the case that the last fragment completes
a sector, the media counting hardware in the controller
counts to the sector boundary only, since the associate LSFL
value is initialized to a value greater than any possible sector
size supported. In the case that the last fragment of the
previous data wedge was a complete sector, the media
counting hardware that counts to sector boundaries within
the data wedge is initialized to zero for the current data
wedge. In the case of the last data wedge of a track, the
hardware may limit the number of data fragments in the
wedge if sectors cannot be split across track boundaries. A
sector fragment can be a whole data sector or a partial data
sector. Embodiments are not limited to a particular data
sector size. Data wedges are sections of the disc and are
described in more detail below with reference to FIG. 3.

The set of parameters generated by the hardware for each
data wedge allow media counting hardware in the controller
to compare with a target PDB previously initialized by the
microprocessor in order to process that sector and any
subsequent sectors on the track, based on the transfer length
programmed by the microprocessor. All sectors are pro-
cessed by the hardware from the beginning of the sector.
Once processing of a target sector begins, other controller
hardware increments the target sector to indicate the next
sector of interest to be processed. Thus, given the parameters
necessary to navigate a given data wedge of a track may be
provided by generating and providing parameters for every
sector fragment of the given data wedge.

With further regard to PBD, LSFI and LSFL, these values
are used to locate the desired data sector on the disc and
process the data in the desired data sector. Specifically, other
controller hardware compares PBD to a target sector dis-
placement initialized by firmware to determine if a given
data sector on the disc is the desired sector. The media
counting hardware in the controller uses the L.SFI to deter-
mine if a given sector is the last sector fragment in a data
wedge. The media counting hardware in the controller
compares LSFL. to a counter that counts the number of
media symbols processed for a given sector fragment. LSFL
can be equal to or less than the number of symbols in a
complete sector.

Data is transferred between the host computer 240 or
other device and the disc drive by way of an interface 244,
which typically includes a buffer to facilitate high speed data
transfer between the host computer 240 or other device and
the disc drive. Data to be written to the disc drive is thus
passed from the host computer 240 to the interface 244 and
then to a read/write channel 246, which encodes and seri-
alizes the data into data symbols and provides the requisite
write current signals to the heads 218. Symbols have a size
in terms of a number of bits. Symbol size is not limited to
any particular number of bits, but can vary depending on the
encoding scheme used by the read/write channel 246. To
retrieve data that has been previously stored in the data
storage device, read signals are generated by the heads 218
and provided to the read/write channel 246, which performs
decoding and error detection and correction operations and
outputs the retrieved data to the interface 244 for subsequent
transfer to the host computer 240 or other device.
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FIG. 3 illustrates an example disc 108. Disc 108 includes
a number of concentric zones, illustrated by circular dotted
lines. The outermost zone may be referred to as the outer
diameter zone 302 and the innermost zone may be referred
to as the inner diameter zone 304. Each zone includes a
number of data tracks 306 on which data is stored. Data
tracks 306 are substantially circular. Date tracks 306 are only
shown on the outer diameter zone 302 in FIG. 3, but it
should be understood that other zones include data tracks.

Servo wedges 308 extend radially from the center of the
disc 108 outwardly traversing the zones. Servo wedges 308
are used by the servo control circuit in the disc drive to
position the heads. Servo wedges 308 logically segment the
disc 108 into a number of logical sections called data wedges
310. Between each adjacent pair of servo wedges 308 are
wedge-shaped regions referred to as data wedges 310 where
data is stored in sectors. There typically are many more
servo wedges 308 and data wedges 310 than shown in FIG.
3. For example, there may be one hundred or more servo
wedges 308 and a corresponding number of data wedges
310.

FIG. 4 abstractly illustrates a “side-on” view of two data
wedges: data wedge 402 and data wedge 404. Data wedge
402 is between servo wedge 406 and servo wedge 408. Data
wedge 404 is between servo wedge 408 and servo wedge
410. An S-Gate signal 412 is generated in substantial syn-
chronization with the servo control wedges. When servo
wedge 406 is read, S-Gate signal 412 rises. The end of servo
wedge 406 causes a falling (trailing) edge 414 before data
wedge 402 is read. After data wedge 402, servo wedge 408
causes rising (leading) edge 416 in the S-Gate signal 412.
The end of servo wedge 408 causes another falling edge 418
in S-Gate signal 412. Data wedge 404 is then read, followed
by another rising edge 420 caused by servo wedge 410.

Data wedge 402 is sequentially ahead of data wedge 404.
As such, data wedge 402 is referred to as data wedge (n-1)
and data wedge 404 is referred to as data wedge (n). The
time from falling edge 414 and rising edge 416 is wedge
time 1 (WT)); the time from falling edge 418 and rising edge
420 is wedge time 2 (WT,). As is understood in the art, the
wedge time interval (e.g., WT; and WT,) is a common unit
of time that is substantially constant, since the servo wedges
are spaced circumferentially in a substantially periodic man-
ner, and the disk spins at a substantially fixed rate. For
example, for a disk that has 250 servo wedges per servo
track, and spins at approximately 7200 revolutions per
minute (rpm), one rising edge of SGATE to SGATE interval
represents approximately 33 microseconds (us). The dura-
tion when SGATE is active over the servo field may be, for
example, about 1 s, leaving roughly 32 ps for processing of
the data wedge.

In the illustrated embodiment, data wedge (n-1) 402
includes a number of fields. An exemplary layout of fields is
shown in FIG. 4. It should be understood that the layout of
fields can vary from data wedge to data wedge and from
zone to zone. As shown in FIG. 4, data wedge (n-1) includes
a servo synchronization gap (or simply ‘gap’) 422, a phase
lock oscillator (PLO) field 424 and a synchronization field
426 prior to sector data. Gap 422, PLO 424 and sync 426
generally enable control logic to phase lock and sync to data
in data wedge (n-1) 402. A first sector (Sector 0) fragment
428 is a section of the disc where user data symbols can be
read from and/or written to. In the illustration sector frag-
ment 428 is a full sector.

Following sector fragment 428 is an inter-sector gap
(ISG) 430, another PLO 424 and another synchronization
field 426, which enable control logic to phase-lock and
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synchronize to a partial sector fragment 432 of another
sector (Sector 1) beginning in data wedge (n-1) 402. Sector
fragment 432 (i.e., an incomplete portion of sector 1) is
followed by a pad 434. Pad 434 typically includes a set of
meaningless dummy bits.

Data wedge (n) 404 similarly includes a number of fields.
Some of the fields are substantially similar to fields in data
wedge (n-1) 402 in terms of their purpose and duration. For
example, data wedge (n) 404 includes a gap 422, followed
by a PLO 424 and synchronization field 426 to enable
phase-lock and synchronization. After synchronization field
426, another partial sector fragment 436 exists. Sector
fragment 436 completes Sector 1, which begins in data
wedge (n-1) 402 with partial sector fragment 432. Like data
wedge (n-1) 402, data wedge (n) 404 next includes an ISG
430, a PLO 424 and a synchronization field 426. Another full
sector 438, Sector 2, is next, followed by another pad 434.

The starting and ending of each data fragment results in
a WG transition, which is also known as a write splice.
These write splices are subsumed into the GAP fields of the
input parameters initialized into registers that act as inputs
for the hardware described herein.

In order to locate and access a desired sector, a track
description entry is generated for each of one or more data
wedges on a track. A track description entry includes a
number of parameters describing a data wedge. In one
embodiment, the parameters include a physical block dis-
placement (PBD), a last sector fragment index (LSFI) and
last sector fragment length (LSFL). The PBD, LSFI and
LSFL are determined based on the sizes of the fields in the
data wedges. An example 4 byte track description entry is
shown below in Table 1:

TABLE 1
BitFk 7 6 5 4 3 2 1 0 Bit#
31 LSFL (11:4) 24
23 LSFL (3:0) Rsvd Rsvd Rsvd LSFI(4) 16
15 LSFI (3:0) PBD (11:8) 8
7 PBD (7:0) 0

In Table 1, PBD is 12 bits, LSFI is 5 bits and LSFL is 12
bits. PBD spans from bit 0 through bit 11, LSFI spans from
bit 12 through bit 16 and LSFL spans from bit 20 through bit
31. Of course, the particular arrangement in Table 1 is
illustrative of only one possible arrangement and embodi-
ments are not so limited.

According to at least one embodiment, each track descrip-
tion entry is generated for a given data wedge prior in time
to the read/write heads being over the given data wedge. For
example, PBD, LSFI and LSFL for a given data wedge are
determined prior to reading the servo synchronization wedge
prior to the given wedge. For example, the PBD, LSFI and
LSFL for data wedge (n-1) 402 are determined during WT,
(i.e., between trailing edge 414 and leading edge 416). In
one embodiment, the trailing edge of each S-Gate servo
signal triggers the system to determine the parameters for
the following data wedge. As such the track description
parameters for the current wedge (i.e., parameters for sectors
immediately after the trailing edge of the S-Gate) have
already been determined.

It should be noted track description generation generally
starts at data wedge 0, whereas the read/write heads of the
disc drive may be over any arbitrary data wedge. As such,
the track description generator may need to “catch up” to the
heads by starting the analysis at data wedge 0 on a given
track and iteratively generating a track description entry for
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each data wedge up to the data wedge that the heads are over,
and continuing (if necessary) until the sector of interest is
located. For example, the heads may currently be over data
wedge 60 and the sector of interest may be in data wedge 65.
Dynamic track description begins at data wedge 0 and
quickly iterates through all the data wedges up to 60. Then,
as discussed above, a track description entry for each
subsequent data wedge is generated during the wedge time
just prior to each subsequent data wedge.

FIG. 5 is a generalized model 500 of field lengths asso-
ciated with data wedges on a disc. The following values are
used in conjunction with the model:

T0: The number of symbols per wedge=WT/symbol clock
period. This is the total number of symbols available in
the data wedge plus the attendant overhead at the start
and end of the data wedge which must exist in every
useable data wedge. This value is required to calculate
the value T11.

T1: Sum of lengths of gap, write splice, PLO and synch
fields. This is the overhead to start the initial data
fragment in a useable data wedge.

T2: Sum of lengths of pad, write splice, ISG, write splice,
PLO and sync fields.

T3: Sum of lengths of pad and write splice. This is the
overhead that must exist if the wedge is a useable data
wedge.

T4: The number of symbols per completed sector.

T5: T4+T2.

T6: The number of symbols of disc sequence overhead
required to process a sector fragment.

T8: The minimum number of symbols in a partial sector
fragment.

T9: The maximum number of symbols in a partial sector
fragment.

T10: T1+T3. This is the overhead that must exist in every
data wedge if the data wedge is a useable data wedge.

T11: TO0-T10. This is the Initial Wedge Symbol Count
with no accumulated symbol count from previous
wedges.

n: The offset from the starting wedge of the track.

X: Number of full sector fragments in wedge “n”.

T12(n): A virtual size of the wedge ‘n’; includes sector
fragment contribution from wedge ‘n-1".

T13(n-1): The previously accumulated length of an
incomplete sector prior to wedge n.

T14(n): Sector fragment size that terminates wedge ‘n’
before the value calculated in T13(n-1) is modified to
account for boundary conditions (“boundary update).

T13(n): Sector fragment size that terminates wedge ‘n’
after boundary update.

Sector_Offset(n): Number of completed sectors from the
beginning of the track to the end of wedge ‘n’.

Sector_Count(n): Number of complete sectors in wedge
‘n’.

A full sector fragment is a sector fragment whose size is
equal to T4 symbols. A partial sector fragment is a sector
fragment whose size is less than T4 symbols. The term
“complete sector” or “completed sector” refers to a full
sector fragment or multiple partial sector fragments whose
sum comprises T4 symbols. Model 500 groups certain field
sizes together in a way that captures data wedge field sizes
of recurring fields or sets of fields. For example, T1 repre-
sents the sum of the sizes of the servo synchronization gap,
the write splice, the PLO and the synchronization field,
which generally recur from wedge to wedge. A write splice
refers to a Write Gate/Read Gate transition area on the
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media. Write splice occurs at the start of a sector fragment
and at the end of a sector fragment.

FIGS. 6-11 are described in view of the foregoing model
500 and term definitions. FIGS. 6-11 illustrate algorithms
that can be carried out in the disc drive to provide automatic
track description according to an embodiment.

Referring to FIG. 6, the algorithm begins with a initial-
izing/incrementing operation 602 where a data wedge coun-
ter, n, is initialized to designate the first data wedge on a
track. In one embodiment, initializing/incrementing opera-
tion 602 sets ‘n’ equal to 0 and increments ‘n” when another
data wedge is selected in later iterations. In a setting
operation 604, the total symbol count is set equal to the
initial wedge symbol count plus any accumulated sector
symbol count from a previous wedge or wedges. It is
assumed that when ‘n’ equals zero (i.e., the initial data
wedge), there is no previously accumulated partial sector
fragment symbols that contribute to total symbol count.

Setting operation 604 sets the total symbol count, T12,
equal to T11 for ‘n’ equal to O and sets T12 equal to
T114T13(n-1) for ‘n’ not equal to 0. It is assumed that the
initial data wedge symbol count, T11, is known (e.g., stored
in memory) or is easily computed based on the wedge time,
the symbol clock period and the set sizes of non-data sector
parameters in the data wedge. Non-data sector symbols refer
to any symbols that are not included in user data sector.
Examples of non-data sector symbols are symbols in the
synchronization gap, PLO, ISG and write splice. T11 is
computed with the equation T11=T0-T10, where T0 and T0
are defined using the values shown above.

Determining operation 606 determines the number of
completing sectors in the current wedge. The number of
completing sectors can include full sector fragments or
multiple partial sector fragments (when ‘n’ is not equal to 0).
In one embodiment, determining operation 606 determines
Sector_Count(n), wherein Sector_Count(n)=T12(n)/T5.
Determining operation 608 determines remainder, T14,
before the boundary update. In one embodiment, determin-
ing operation 608 determines T14 using the equation T14=T
(12) mod T5.

Determining operation 610 determines the sector frag-
ment size, T13(n), that contributes to the next data wedge.
One possible embodiment of determining operation 610 is
shown in FIG. 7 and described in detail below. Setting
operation 612 sets the last usable wedge equal to ‘n’ if n
equals O or if Sector_Count(n) is not equal to 0. The last
usable wedge refers to the last data wedge that includes a
usable sector. The last usable wedge is used later in the
algorithm.

Determining operation 614 determines Sector_Offset(n).
An embodiment of determining operation 614 is shown in
FIG. 8 and discussed in detail below. Determining operation
616 determines Physical Block Displacement (PBD) of the
current data wedge, n. An embodiment of determining
operation 616 is shown in FIG. 9 and discussed below.
Determining operation 618 determines the Last Sector Frag-
ment Index (LSFI) of the current data wedge. An embodi-
ment of determining operation is shown in FIG. 10 and
discussed below. Determining operation 620 determines the
Last Sector Fragment Length (LSFL) of the current data
wedge. An embodiment of determining operation 620 is
shown in FIG. 11 and discussed below.

After determining operation 620, the process repeats from
selecting operation 602 until the last wedge in the selected
track is processed or until a desired sector of interest is
located. For example, generally a particular user data sector
is sought to retrieve user data therefrom or to write data
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thereto. Logic in the disc drive can compare the sector
indicated by the PBD to the sector of interest and cause the
servo controller to locate the read/write head(s) over the
sector indicated by the PBD when the sector indicated by the
PBD corresponds to the sector of interest.

After iterating through one or more data wedges in
operations 602 through 620, an adjusting operation 622
adjusts LSFI and LSFL if the last usable data wedge does not
end on a sector boundary. In one embodiment, adjusting
operation determines if T13(last_usable_wedge) is not equal
to zero. If T13 of the last usable wedge is not equal to zero,
LSFTI of the last usable wedge is decremented by one and
LSFL of the last usable wedge is set equal to 2°~T6, where
Kk’ is the number of bits used to represent LSFL. LSFL. may
be viewed as indicating the length of a sector fragment
minus the sequencer overhead.

A setting operation 624 sets an initial usable wedge
parameter. In one embodiment, the initial usable wedge
parameter is set equal to the last usable wedge plus one if the
last usable wedge is not equal to 0, and is set equal to zero
if the Sector_Count of the initial data wedge is equal to 0.

FIG. 7 is a flowchart illustrating one possible embodiment
of determining operation 610. Determining operation 610
determines the sector fragment size of a first data wedge that
contributes to a subsequent data wedge. The sector fragment
size that contributes to a subsequent data wedge is desig-
nated as T13(n), where ‘n’ indicates the current data wedge.
T13(n-1) is used to compute a virtual size of the current data
wedge. The virtual size of the subsequent data wedge is
designated as T12(n). As described above with reference to
FIG. 6, T12(n) is used to computer the Sector_Count(n).

In FIG. 7, a query operation 702 determines whether a
sector fragment remainder of a current data wedge is greater
than or equal to the number of symbols in a full sector. The
remainder is designated as T14(n). If T14(n) is greater than
or equal to the number of symbols per sector the operation
610 branches “YES” to setting operation 704. Setting opera-
tion 704 sets the contributing fragment size, T13(n), equal to
zero. An incrementing operation 706 then increments the
Sector_Count(n) of the current data wedge.

On the other hand, if query operation 702 determines that
the remainder, T14(n), is not greater than or equal to the
number of symbols per sector, the operation 610 branches
“NO” to another query operation 708. Query operation 706
determines whether the remainder, T14(n), is greater than
the maximum partial sector fragment size, T9. If T14(n) is
greater than the maximum partial sector fragment size, T9,
the operation 610 branches “YES” to setting operation 710.
Setting operation 710 sets the contributing fragment size,
T13(n), equal to the maximum partial sector fragment size,
T9.

On the other hand, if query operation 708 determines that
the remainder, T14(n), is not greater than the maximum
partial sector fragment size, T9, the operation 610 branches
“NO” to another query operation 712. Query operation 712
determines whether the remainder, T14(n), is less than the
minimum partial sector fragment size, T8. If T14(n) is less
than T8, the operation 610 branches “YES” to setting
operation 714. Setting operation sets the contributing frag-
ment size, T13(n), equal to zero.

On the other hand, if query operation 712 determines that
remainder, T14(n), is not less than the minimum partial
sector fragment size, T8, the operation 610 branches “NO”
to setting operation 716. Setting operation 716 sets the
contributing fragment size, T13(n), equal to the remainder,
T14(n). After incrementing operation 706, setting operation
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710, setting operation 714 and setting operation 716, the
operation 610 returns at returning operation 718.

FIG. 8 is a flowchart illustrating an embodiment of
determining operation 614. Determining operation 614
determines Sector_Offset(n). In general, operation 614
maintains a running count of complete sectors along a given
track. Initially, a query operation 802 determines whether
the current data wedge, n, is not equal to zero (i.e., the initial
wedge). If the current data wedge is not the initial data
wedge, the operation 614 branches “YES” to setting opera-
tion 804. Setting operation 804 adds the number of com-
pleted sectors to the number of completed sectors from prior
data wedges. In one embodiment, setting operation 804 sets
Sector_Offset(n) equal to Sector_Offset(n-1) plus the Sec-
tor_Count(n).

On the other hand, if query operation 802 determines that
the current data wedge is the initial data wedge, the opera-
tion 614 branches “NO” to setting operation 806. Setting
operation 806 initializes the number of completed sectors to
the number of completed sectors in the current data wedge.
In one embodiment, setting operation 806 sets Sector_Offset
(n) equal to Sector_Count(n). After setting operation 804
and setting operation 806, operation 614 returns at returning
operation 808.

FIG. 9 is a flowchart illustrating an embodiment of
determining operation 616. Determining operation 616
determines the PBD for a current data wedge designated by
‘n’. Query operation 902 determines whether ‘n’ is not equal
to zero (i.e., the current data wedge is not the initial data
wedge). If query operation 902 determines that the current
data wedge is not the initial data wedge, the operation 616
branches “YES” to setting operation 904. Setting operation
904 sets the PBD of the current data wedge equal to the
previous sector offset.

Another query operation 906 determines if the contribut-
ing partial sector fragment, T13(n-1), and the sector count,
Sector_Count(n), are not equal to zero. Query operation 906
essentially determines if a partial sector fragment began in
a previous data wedge and completed in the current data
wedge. If query operation 906 determines that a partial
sector fragment began in a previous data wedge and com-
pleted in the current data wedge, the operation 616 branches
“YES” to incrementing operation 908. Incrementing opera-
tion 908 adds one to PBD of the current data wedge.

If query operation 906 determines that the contributing
partial sector fragment is zero or the sector count of the
current data wedge is zero, the operation 616 branches “NO”
to return operation 910. Referring again to query operation
902, if the current data wedge is the initial data wedge, the
operation 616 branches “NO” to setting operation 912.
Setting operation 912 sets PBD of the current data wedge
equal to zero. After incrementing operation 908 and setting
operation 912, operation 616 branches to return operation
910.

FIG. 10 is a flowchart illustrating an embodiment of
determining operation 618. Determining operation 618
determines LSFI for a current data wedge. A query operation
1002 determines whether the contributing partial sector
fragment size, T13(n-1), is not equal to zero. If contributing
partial sector fragment size is not equal to zero, operation
618 branches “YES” to setting operation 1004 which sets
LSFT of the current data wedge equal to the sector count for
the current data wedge.

If query operation 1002 determines that the contributing
partial sector fragment size is equal to zero, the operation
618 branches “NO” to setting operation 1006. Setting opera-
tion 1006 sets LSFI of the current data wedge equal to the
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sector count of the current data wedge minus one. Operation
618 then returns via returning operation 1008.

FIG. 11 is a flowchart illustrating an embodiment of
determining operation 620. Determining operation 620
determines the LSFL of a current data wedge. Query opera-
tion 1102 determines whether the contributing partial sector
fragment length of the current wedge, T13(n), is not equal to
zero. If T13(n) is not equal to zero, operation 620 branches
“YES” to setting operation 1104. Setting operation 1104 sets
LSFL of the current data wedge equal to T13(n) minus
non-data sector symbols required to process the partial
sector fragment, T6.

If query operation 1102 determines that the contributing
partial sector fragment length of the current wedge, T13(n),
is equal to zero, operation 620 branches “NO” to setting
operation 1106. Setting operation 1106 sets LSFL of the
current data wedge equal to a maximum threshold value,
0x1000, minus the non-data sector symbols required to
process the partial sector fragment, T6. In this case the value
0x1000 is used because 12 bits are allocated to LSFL.

FIG. 12 is a flowchart illustrating an embodiment of
initializing operation 626. Initializing operation 626 iterates
through any unusable data wedges on a track and initializes
PBD, LSFI and LSFL for each unusable data wedge. Start-
ing operation 1202 sets a data wedge counter, ‘n’, equal to
the first unusable data wedge in the track.

An initializing operation 1204 sets PBD for the data
wedge identified by ‘n’ to an initial value, such as OxFFF.
Initializing operation 1206 sets LSFI for the data wedge
identified by ‘n’ equal to an initial value, such as Ox1F.
Initializing operation 1208 sets LSFL for the data wedge
identified by ‘n’ equal to an initial value, such as OxFFF.
Query operation 1210 determines if more data wedges are
on the track. If so, operation 626 branches “YES” to
incrementing operation 1214 where data wedge counter, ‘n’,
is incremented. If no more data wedges are on the track,
operation 626 branches “NO” to return operation 1212.

Although any algorithms described here may be imple-
mented in software, hardware, firmware or any combination
thereof, the algorithms shown in FIGS. 6-12 and described
above may be more suited for implementation in software
and firmware than hardware. A hardware implementation is
essentially iterative and is generally based on the algorithms
shown and described in FIGS. 6-12.

One embodiment of a hardware implementation may vary
from the previously described embodiment to take advan-
tage of various hardware capabilities. The following values
can be used in this embodiment. These values are initialized
in registers by the microprocessor 242:

Maximum Full Sector per Wedge: Below mentioned X, 5
bits.

Last usable wedge: Wedges following are unusable, 12
bits

T11: Number of symbols per data wedge that can be used,
16 bits

T4: Number of symbols per full sector, 12 bits.
T8: Minimum number of symbols in a partial sector
fragment, 8 bits
T9: Maximum number of symbols in a partial sector
fragment, 16 bits
T15: Number of symbols in X full sectors plus associated
overhead (X*T5), 16 bits.
T16: Number of symbols in (X+1) full sectors plus
associated overhead, 16 bits.
In a hardware implementation, the track description gen-
erator will initially search for a valid servo wedge number at
the leading edge of the S-Gate signal. Then it will run the
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previously described algorithm in a modified form, until the
track description entry is calculated.

The track description generator iteratively loops, calcu-
lating T13(n), Sector_Count(n) and Sector_Offset(n) for
each data wedge from the initial wedge virtual number (0)
to the current wedge. After catching up with the current
wedge virtual number as indicated by the servo logic, the
hardware calculates the track description entry parameters
for the current wedge. After catching up and calculating the
associated track description entry, the hardware iterates once
to calculate values for the next wedge.

In an implementation, the track description entry is gen-
erated in the first leading edge of a first S-Gate pulse to a
following S-Gate pulse. If it is not possible to get oriented
within the first leading edge, the track description generator
will attempt to get oriented by the next leading edge of the
S-Gate signal. The hardware can be programmed up to the
number of servos on the track, to get oriented. In the case
when more then one data wedge is required to be oriented,
the hardware suspends iterating through it internal servo
count and preserves it’s internal hardware state, and waits
for the trailing edge of SGATE to resumes iterating and
trying to catch up with the actual servo number in the next
data wedge. It is desirable for performance reasons to get
oriented within one data wedge, and as is shown below
given the state of current technology that is what will occur.
A worst case scenario assumes 500 servo wedges, 12 micro-
seconds between S-Gate pulses, 160 MHz clock frequency
(6.25 nanosecond period), 3 memory clocks of calculation
time per data wedge, 20 memory clocks of overhead calcu-
lating the track description entry values and other logic
overhead before being oriented. Under this worst case
scenario, the following time is available:

((500 Servo/Rev)(3 mem_clk_per calc)+20
mem_clk)(6.25 ns per mem_clk)=9500 ns=9.5
microseconds.

Given the foregoing assumptions, sufficient margin exists
to calculate the track descript entry values in one trailing
edge of S-Gate to leading edge of S-Gate time when the disc
drive is un-oriented.

The above specification, examples and data provide a
complete description of the structures of exemplary imple-
mentations of apparatus that may be used for automatically
generate a track description. Although various implementa-
tions of the apparatus have been described above with a
certain degree of particularity, or with reference to one or
more individual implementations, those skilled in the art
could make numerous alterations to the disclosed imple-
mentations without departing from the spirit or scope of this
invention. It is intended that all matter contained in the
above description and shown in the accompanying drawings
shall be interpreted as illustrative only of particular imple-
mentations and not limiting. Changes in detail or structure
may be made without departing from the basic elements of
the invention as defined in the following claims.

What is claimed is:

1. A method, comprising generating a track description in
real-time describing at least a portion of a track of a storage
medium, wherein the storage medium is logically segmented
into a plurality of data wedges and the track description
comprises a physical block displacement (PBD), a last
sector fragment index (LSFI), and a last sector fragment
length (LSFL).
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2. A method according to claim 1, wherein dynamically
generating the track description comprises determining the
track description for a data wedge prior to synchronization
of that data wedge.

3. A method according to claim 1, wherein the tracks are
substantially circular.

4. A method according to claim 1, wherein the PBD
indicates a sector displacement from a starting location of a
track, the LSFI indicates which sector fragment is the last
sector fragment in a data wedge, and LSFL indicates the
number of symbols in the last sector fragment in the data
wedge.

5. A method according to claim 1, further comprising
processing data at a sector indicated by the PBD if the sector
indicated by the PBD corresponds to a desired sector.

6. A method according to claim 1, wherein dynamically
generating the track description comprises:

determining a sector count indicating a number of com-

pleted sectors in a first data wedge;

determining a remainder of a sector fragment in the first

data wedge;

determining a contributing fragment size indicating a

length of a partial sector fragment in the first data
wedge that contributes to a sector fragment in a sub-
sequent data wedge;

setting a last sector fragment index (LSFI) equal to the

sector count if the contributing fragment size is non-
zero; and

setting the LSFI equal to sector count minus one if the

contributing fragment size is zero.

7. A method according to claim 1, further comprising
maintaining a running count of completed sectors around the
track.

8. The method of claim 1, further comprising using the
track-description to determine if a given sector is the last
sector fragment in a data wedge.

9. Apparatus, comprising a dynamic track description
generator configured to dynamically generate a track
description describing a data wedge of a track on a storage
medium, wherein the track description is generated at a time
prior to synchronization with the data wedge, wherein the
storage medium is logically segmented into a plurality of
data wedges and the track description comprises a physical
block displacement (PBD), a last sector fragment index
(LSFI), and a last sector fragment length (LSFL).

10. Apparatus according to claim 9, wherein the tracks are
substantially circular.

11. Apparatus according to claim 9, wherein the PBD
indicates a sector displacement from a starting location of a
track, the LSFI indicates which sector fragment is the last
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sector fragment in a data wedge, and LSFL indicates the
number of symbols in the last sector fragment in the data
wedge.
12. Apparatus according to claim 9, further comprising a
processor that processes data at a sector indicated by the
PBD if the sector indicated by the PBD corresponds to a
desired sector.
13. Apparatus according to claim 9, wherein the dynamic
track description generator determines the track description
for a data wedge prior to synchronization of that data wedge.
14. Apparatus according to claim 9, further comprising
media counting hardware that determines a sector count
indicating a number of completed sectors in a first data
wedge;
determines a remainder of a sector fragment in the first
data wedge;
determines a contributing fragment size indicating a
length of a partial sector fragment in the first data
wedge that contributes to a sector fragment in a sub-
sequent data wedge;
sets a last sector fragment index (LLSFI) equal to the sector
count if the contributing fragment size is nonzero; and
sets the LSFI equal to sector count minus one if the
contributing fragment size is zero.
15. Apparatus according to claim 9, further comprising a
counter maintaining a running count of completed sectors
around the track.
16. System, comprising:
a storage medium;
a dynamic track description generator configured to
dynamically generate a track description describing a
data wedge of a track on the storage medium, wherein
the track description is generated at a time prior to
synchronization with the data wedge, and
media counting hardware configured to:
determine a sector count indicating a number of com-
pleted sectors in a first data edge;

determine a remainder of a sector fragment in the first
data wedge;

determine a contributing fragment size indicating a
length of a partial sector fragment in the first data
wedge that contributes to a sector fragment in a
subsequent data wedge;

set a last sector fragment index (LSFI) equal to the
sector count if the contributing fragment size is
nonzero; and

set the LSFI equal to sector count minus one if the
contributing fragment size is zero.
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